In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
Table 1
point 1 (0, 6 ) x1 = 0 y1 = 6
point 2 (1 , 7) x2 = 1 y2 = 7
Table 2
point 1 (0 , -2) x1 = 0 y1 = -2
point 2 (1 , -3) x2 = 1 y2 = -3
perpendincular, parallel or neither = ?
Step 02:
Table 1
slope formula
[tex]m1\text{ = }\frac{y2-y1}{x2-x1}=\frac{7-6}{1-0}=\frac{1}{1}=1[/tex]
Table 2
slope formula
[tex]m2\text{ = }\frac{-3-(-2)}{1-0}=\frac{-3+2}{1}=\frac{-1}{1}=-1[/tex]
Slope of the perpendicular line, m’
m ' = - 1 / m
m2 = - 1 / m1
-1 = - 1 / 1
-1 = -1
The answer is:
The lines are perpendicular.