Respuesta :

We have the following equation

[tex]4^{1.5}=8[/tex]

Using the logarithm of 2 on both sides, we have

[tex]\log _24^{1.5}=\log _28[/tex]

We can rewrite the arguments of the both logs

[tex]\begin{gathered} \log _24^{1.5}=\log _28 \\ \log _24^{1.5}=\log _22^3 \end{gathered}[/tex]

Using the following property

[tex]\log _ab^c=c\log _a_{}b[/tex]

We can rewrite our expression as

[tex]\begin{gathered} \log _24^{1.5}=\log _22^3 \\ \log _24^{1.5}=3\log _22 \\ \log _24^{1.5}=3 \\ 1.5\log _24^{}=3 \\ \log _24^{}=2 \end{gathered}[/tex]

And this is a way of rewriting our expression in logarithmic form