Respuesta :

Given:

The point given is

[tex](x_1,y_1)=(-3,4)[/tex]

and the slope is

[tex]m=\frac{5}{6}[/tex]

Required:

Point-slope form of a line passing through given point.

Answer:

Here, we use the point-slope form of a line passing through the point

[tex](x_{1,}y_1)[/tex]

and having slope

[tex]m[/tex]

is given by,

[tex]y-y_1=m(x-x_1)[/tex]

Thus, by substituting the values, the point-slope form of a line passing through the given point is,

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-4=\frac{5}{6}(x-(-3)) \\ 6(y-4)=5(x+3) \\ 6y-24=5x+15 \\ 6y=5x+15+24 \\ 6y=5x+39 \\ y=\frac{5}{6}x+\frac{39}{6} \\ y=\frac{5}{6}x+\frac{13}{2} \end{gathered}[/tex]

Final Answer:

The point-slope form of a line passing through the given point is,

[tex]y=\frac{5}{6}x+\frac{13}{2}[/tex]