Please help me answer this math question. Please go through the steps clearly

The equation for car 2 is represented below as
[tex]y=55x[/tex]Where,
[tex]\begin{gathered} x=\text{time (hours)} \\ y=\text{distance(miles)} \end{gathered}[/tex]To calculate the average speed of each car, we will have to calculate the slope of the line
For car 2, when x= 1 hr
[tex]\begin{gathered} y=55x \\ y=55\times1 \\ y=55\text{miles} \end{gathered}[/tex]When x=4 hrs,
[tex]\begin{gathered} y=55x \\ y=55\times4 \\ y=220\text{miles} \end{gathered}[/tex]The average speed of car 2 will be calculated using the formula below
[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \text{Average spe}ed=\frac{220-55}{4-1} \\ \text{Average spe}ed=\frac{165\text{miles}}{3\text{hrs}} \\ \text{Average spe}ed=55\text{ miles/hr} \end{gathered}[/tex]Hence,
The average speed of car 2 is 55 miles/hr
For car 1, when the value of x=1 hr
[tex]y=64\text{ miles}[/tex]When the value of x = 4hrs
[tex]y=256\text{ miles}[/tex]To calculate the average speed of Car 1 we will use the formula below
[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \text{Average spe}ed\frac{=256-64}{4-1} \\ \text{Average spe}ed=\frac{192}{3} \\ \text{Average spe}ed=64\text{ miles/hr} \end{gathered}[/tex]Hence,
The average speed of car 1 is 64 miles/hr
Therefore,
Car 1 is travelling at a greater speed