x(t)=t+5, y(t)=3t^2−4, where t is on the interval [−4,0].What is the rectangular form of the parametric equations?What interval does x fall under?

Respuesta :

Given

The equations are given

x(t)=t+5, y(t)=3t^2−4, where t is on the interval [−4,0].

Explanation

To find the rectangular form of parametric equations

Substitute the value of t from x in y.

[tex]t=x-5[/tex]

Then ,

[tex]\begin{gathered} y=3(x-5)^2-4 \\ y=3(x^2+25-10x)-4 \\ y=3x^2+75-30x-4 \\ y=3x^2-30x+71 \end{gathered}[/tex]

Answer

The rectangular form of parametric equations is

[tex]y=3x^2-30x+71[/tex]

The interval where x fall is

[tex](-\infty,\infty)[/tex]

Otras preguntas