The equations are given
x(t)=t+5, y(t)=3t^2−4, where t is on the interval [−4,0].
To find the rectangular form of parametric equations
Substitute the value of t from x in y.
[tex]t=x-5[/tex]Then ,
[tex]\begin{gathered} y=3(x-5)^2-4 \\ y=3(x^2+25-10x)-4 \\ y=3x^2+75-30x-4 \\ y=3x^2-30x+71 \end{gathered}[/tex]The rectangular form of parametric equations is
[tex]y=3x^2-30x+71[/tex]The interval where x fall is
[tex](-\infty,\infty)[/tex]