Answer:
A
Explanation:
To determine which sequence of transformation will map figure K onto figure K', we test each of the options using the point (6,5) in Figure K.
Option A
Reflection across x=4, 180° rotation about the origin, and a translation of (x+8,y)
[tex]\left(6,5\right)\rightarrow(2,5)\rightarrow\left(-2,-5\right)\rightarrow(6,-5)[/tex]
Option B
Reflection across x=4, 180° rotation about the origin, and a translation of (x-8, y)
[tex]\left(6,5\right)\rightarrow(2,5)\rightarrow\left(-2,-5\right)\rightarrow(-10,-5)[/tex]
Option C
Reflection across y=4, 180° rotation about the origin, and a translation of (x+8,y)
[tex]\left(6,5\right)\rightarrow(6,3)\rightarrow\left(-6,-3\right)\rightarrow(2,-3)[/tex]
Option D
Reflection across y=4, 180° rotation about the origin, and a translation of (x-8,y)
[tex]\left(6,5\right)\rightarrow(6,3)\rightarrow\left(-6,-3\right)\rightarrow(-14,-3)[/tex]
We can see that Option A is the one which maps point (6,5) to (6,-5).
Therefore, it is the sequence of transformations will map figure K onto figure K'.