Write the standard form equation for the function that has a vertex: (1, 2); passes through (3, 10).Write the equation of the parabola.I worked out the problem and for some reason I’m getting the same answer and it’s wrong. I don’t know why

Respuesta :

Given:

The vertex of the parabola is (1,2).

The point passes through the parabola = (3,10).

Required:

We need to find the equation of the parabola.

Explanation:

Consider the standard form equation for the parabola.

[tex]y=a(x-h)^2+k[/tex]

where (h,k) is the vertex.

Substitute (h,k) =(1,2) in the equation.

[tex]y=a(x-1)^2+2[/tex]

Substitute x =3 and y=10 in the equation to find the value of a.

[tex]10=a(3-1)^2+2[/tex]

[tex]10=a(2)^2+2[/tex]

[tex]10=4a+2[/tex]

Subtract 2 from both sides of the equation.

[tex]10-2=4a+2-2[/tex]

[tex]a=2[/tex]

Substitute a =2, h=1 nad l=2 in the equation of the parabola.

[tex]y=2(x-1)^2+2[/tex][tex]\text{Use \lparen a-b\rparen}^2=a^2+b^2-2ab.[/tex]

[tex]y=2(x^2+1^2-2(1)(x))+2[/tex]

[tex]y=2(x^2+1-2x)+2[/tex]

[tex]y=2x^2+2\times1-2\times2x+2[/tex]

[tex]y=2x^2+2-4x+2[/tex]

[tex]y=2x^2-4x+2+2[/tex]

[tex]y=2x^2-4x+4[/tex]

Final answer:

The standard form equation for the function:

[tex]y=2x^2-4x+4[/tex]