Given
a) sin A = 0.4848
b) cos Y = 0.7431
c) cos X = 0.4226
d) tan B = 19.0811
To find:
Each angle measure to the nearest degree.
Explanation:
It is given that,
a) sin A = 0.4848
b) cos Y = 0.7431
c) cos X = 0.4226
d) tan B = 19.0811
That implies,
a) sin A = 0.4848.
Then,
[tex]\begin{gathered} A=\sin^{-1}(0.4848) \\ =28.99\degree \\ =30\degree \end{gathered}[/tex]b) cos Y = 0.7431.
Then,
[tex]\begin{gathered} Y=\cos^{-1}(0.7431) \\ =42.0038\degree \\ =42\degree \end{gathered}[/tex]c) cos X = 0.4226.
Then,
[tex]\begin{gathered} X=\cos^{-1}(0.4226) \\ =65.001\degree \\ =65\degree \end{gathered}[/tex]d) tan B = 19.0811.
Then,
[tex]\begin{gathered} B=\tan^{-1}(19.0811) \\ =86.99\degree \\ =87\degree \end{gathered}[/tex]Hence, the measure of each angle is,
a) A = 30°.
b) Y = 42°.
c) X = 65°.
d) B=87°.