Triangle NMO is drawn with vertices N(−5, 2), M(−2, 1), O(−3 , 3). Determine the image vertices of N′M′O′ if the preimage is reflected over x = −3. N′(5, 2), M′(2, 1), O′(3, 3) N′(−1, 2), M′(−4, 1), O′(−3, 3) N′(1, 2), M′(−2, 1), O′(−1, 3) N′(−5, −2), M′(−2, −1), O′(−3, −3)

Respuesta :

Answer:

The vertices of the image are:

[tex]\begin{gathered} N^{\prime}(-1,-2) \\ M^{\prime}(-4,1) \\ O^{\prime}(-3,3) \end{gathered}[/tex]

Step-by-step explanation:

Remember that the general rule to reflect over a vertical line in the form:

[tex]x=a[/tex]

is:

[tex](x.y)\rightarrow(-x-2a,y)[/tex]

For x = 3, we'll have that the general rule is:

[tex](x,y)\rightarrow(-x-6,y)[/tex]

We'll apply this transformation to the vertices, as following:

[tex]\begin{gathered} N(-5,2)\rightarrow N^{\prime}(-1,-2) \\ M(-2,1)\rightarrow M^{\prime}(-4,1) \\ O(-3,3)\rightarrow O^{\prime}(-3,3) \end{gathered}[/tex]

Therefore, the vertices of the image are:

[tex]\begin{gathered} N^{\prime}(-1,-2) \\ M^{\prime}(-4,1) \\ O^{\prime}(-3,3) \end{gathered}[/tex]