Respuesta :

The ordered list of the given plot is:

0, 0, 2, 2, 2, 3, 4, 4, 5, 5, 5, 7, 7

The first interquartile is given by:

IQ = Q3 - Q1

Where Q3 and Q1:

[tex]\begin{gathered} Q_1=\frac{1}{4}(n+1) \\ Q_3=\frac{3}{4}(n+1) \end{gathered}[/tex]

where n = 8 is the total number of data.

[tex]\begin{gathered} Q_1=\frac{1}{4}(8+1)=\frac{1}{4}(9)=\frac{9}{4} \\ Q_3=\frac{3}{4}(8+1)=\frac{3}{4}(9)=\frac{27}{4} \end{gathered}[/tex]

Then, the interquatile range:

IQ = 27/4 - 9/4 = 18/4

Hence, the interquartile range is 18/4