For the given rectangular equation, give its equivalent polar equation.

ANSWER
[tex]\text{ r = }\frac{\text{ 5}}{\text{ cos}\theta\text{ - sin }\theta}[/tex]EXPLANATION
Given that;
[tex]x\text{ - y = 5}[/tex][tex]\text{ The rectanguar equation is x - y = 5}[/tex][tex]\begin{gathered} \text{ for polar form of equation} \\ \text{ x= rcos}\theta \\ \text{ y = rsin}\theta \\ \end{gathered}[/tex]Find r
[tex]\begin{gathered} \text{ rcos}\theta\text{ - rsin}\theta\text{ = 5} \\ r(cos\text{ }\theta\text{ - sin }\theta)\text{ = 5} \\ \text{ Isolate r} \\ \text{ r = }\frac{5}{(cos\theta\text{ - sin }\theta)} \end{gathered}[/tex]