Respuesta :

Solution

The formula to use is

[tex]A(t)=P(1+\frac{r}{n})^{nt}[/tex]

From the question, we have

[tex]\begin{gathered} P=\text{ \$}400 \\ \\ t=6\text{ }years \\ \\ r=2\text{ \%} \\ \\ r=0.02 \\ \\ n=1 \end{gathered}[/tex]

Using the parameters, we have

[tex]\begin{gathered} A(t)=P(1+\frac{r}{n})^{nt} \\ \\ A(t)=400(1+\frac{0.02}{1})^6 \\ \\ A(t)=400(1.02)^6 \\ \\ A(t)=\text{ \$}450.46 \end{gathered}[/tex]

The answer is

Ver imagen KelseyW646993