Answer:
To answer this we use the ideal gas equation:
[tex]\begin{gathered} P.V=n.R.T \\ \\ T=\frac{P.V}{n.R} \end{gathered}[/tex]Where:
P is the pressure of the gas (2 atm)
V is the volume of the container (11L)
R is the ideal gas constant (0.0821 L.atm/K.mol)
T is the temperature of the gas
n is the number of moles.
To determine the number of moles we use the carbon dioxide molar mass (44 g/mol)
[tex]n=\frac{21g}{44\frac{g}{mol}}=0.477\text{ mol}[/tex]Now we calculate:
[tex]\begin{gathered} T=\frac{2atm.11L}{0.477mol.0.0821\frac{L.atm}{K.mol}} \\ \\ T=562\text{ K=289}\degree C \end{gathered}[/tex]So the answer is:
The temperature of the gas is 289°C