4. A 50.0-kg homogeneous beam supports a mass of 15.0 kilograms,as shown. The center of gravity of the beam is at the midpoint ofthe beam. Find the magnitude of the tension, T, in the rope.D. 0.01 10

4 A 500kg homogeneous beam supports a mass of 150 kilogramsas shown The center of gravity of the beam is at the midpoint ofthe beam Find the magnitude of the te class=

Respuesta :

First let's find the tension generated by the mass of 15 kg.

We can use the following formula to find this tension component:

[tex]\begin{gathered} T_{y1}=m\cdot g\cdot\sin (\theta) \\ T_{y1}=15\cdot9.81\cdot\sin (37\degree) \\ T_{y1}=15\cdot9.81\cdot0.602 \\ T_{y1}=88.58\text{ N} \end{gathered}[/tex]

Now, to find the tension generated by the beam, first let's find the angle from the connection point of the rope with the wall and the center of gravity of the beam:

[tex]\begin{gathered} \tan (37\degree)=\frac{x}{5} \\ 0.754=\frac{x}{5} \\ x=3.77 \\ \\ \tan (\theta)=\frac{x}{2.5} \\ \tan (\theta)=\frac{3.77}{2.5} \\ \text{tan(}\theta)=1.508 \\ \theta=56.45\degree \end{gathered}[/tex]

Now, let's use the same formula we used in the beggining:

[tex]\begin{gathered} T_{y2}=m\cdot g\cdot\sin (\theta) \\ T_{y2}=50\cdot9.81\cdot\sin (56.45\degree) \\ T_{y2}=50\cdot9.81\cdot0.833 \\ T_{y2}=408.59 \end{gathered}[/tex]

Adding both tensions, we have:

[tex]\begin{gathered} T=T_{y1}+T_{y2} \\ T=88.58+408.59 \\ T=497.17 \end{gathered}[/tex]

Ver imagen JasibeM271851