Step 1
Expand both sides of the equation.
[tex]\begin{gathered} (x-4)^2=(\sqrt[]{2x-5)}^2 \\ (x-4)\text{ ( x-4) = (}\sqrt[]{2x-5)}\text{ (}\sqrt[]{2x-5)} \end{gathered}[/tex][tex]\begin{gathered} x^2-4x-4x\text{ +16 = }(2x-5)^{\frac{1}{2}}(2x-5)^{\frac{1}{2}} \\ x^2-8x+16=(2x-5)^{\frac{1}{2}+\frac{1}{2}} \end{gathered}[/tex][tex]\begin{gathered} x^2-8x+16=(2x-5)^1 \\ x^2-8x\text{ +16 = 2x-5} \end{gathered}[/tex]Step 2
Apply the given formula to the answer in step 1
[tex]\begin{gathered} y\text{ }=\text{ 4} \\ x^2_{}-2(x)(4)+4^2=2x-5 \end{gathered}[/tex]Hence the required answer is
[tex]x^2-2(x)(4)+4^2=2x-5[/tex]