Respuesta :

Given:

ZY=90 ft, YX=672 ft, and ZX=678 ft.

WY=t

The line segment WY is perpendicular to the side ZX from the third vertex Z.

So WY is the altitude of the given triangle.

Let a=90 ft, b=672 ft and c=678 ft, and t is altutude.

The formula for the altitude is

[tex]t=\frac{2\sqrt[]{s(s-a)(s-b)(s-c)}}{b}[/tex]

Here s is the semiperimeter of the tirangle .

[tex]s=\frac{a+b+c}{2}[/tex]

Substitute a=90ft, b=672, and c=678 in the equation , we get

[tex]s=\frac{90+672+678}{2}=720\text{ ft}[/tex]

We get s=720ft.

Substitute s=720ft, a=90ft, b=672, and c=678 in the altitute formula, we get

[tex]t=\frac{2\sqrt[]{720(720-90)(720-672)(720-678)}}{672}[/tex]

[tex]t=\frac{2\sqrt[]{720\times630\times\times48\times42}}{672}[/tex]

[tex]t=\frac{2\sqrt[]{914457600}}{672}=90[/tex]

Hence the value of the variable is 90 ft.