A rectangle is formed with the base on the x-axis and the top corners on the function y= 25 - x^2. Find thedimensions of the rectangle with the largest area.

Respuesta :

If we draw a rectangle under the graph, we can find that the width w of the rectangle is 2x and the height h is 25 - x^2.

So, the area of the rectangle is,

[tex]\begin{gathered} A=2x(25-x^2) \\ A=50x-2x^3 \\ \end{gathered}[/tex]

Differentiate the function to find maxiumum.

[tex]A^{\prime}=50-6x^2[/tex]

Putting A'=0,

[tex]\begin{gathered} x^2=\frac{50}{6}=\frac{25}{3} \\ x=+\frac{5}{\sqrt[]{3}}or-\frac{5}{\sqrt[]{3}} \end{gathered}[/tex]

x should be positive So,

[tex]x=\frac{5}{\sqrt[]{3}}[/tex]

Differentiate A' with respect to x to find if it is a maximum.

[tex]\begin{gathered} A^{\doubleprime}=-12x<0 \\ \text{when x=}\frac{\text{5}}{\sqrt[]{3}} \end{gathered}[/tex]

It confirms that area is a maximum for x.

So, the width of the rectangle with largest area is ,

[tex]w=2x=2\times\frac{5}{\sqrt[]{3}}=\frac{10}{\sqrt[]{3}}[/tex][tex]\begin{gathered} h=25-x^2 \\ h=25-(\frac{5}{\sqrt[]{3}})^2 \\ h=25-\frac{25}{3} \\ h=\frac{50}{3} \end{gathered}[/tex]

Ver imagen AzraelU26425
Ver imagen AzraelU26425