Respuesta :

Given:

The function is,

[tex]g(x)=\frac{7}{x}\text{ over interval \lbrack{}3,6\rbrack}[/tex]

The average rate of change is calcuated as,

[tex]\begin{gathered} \frac{f(b)-f(a)}{b-a} \\ \lbrack a,b\rbrack=\lbrack3,6\rbrack \\ \frac{f(6)-f(3)}{6-3}=\frac{\frac{7}{6}-\frac{7}{3}}{3}=\frac{\frac{21-42}{18}}{3}=\frac{-21}{18\times3}=-\frac{7}{18} \end{gathered}[/tex]

Answer: avarage rate of change is -7/18.