Respuesta :

a) To find the inverse function, first, we set the following equation:

[tex]y=7x+2.[/tex]

Now, we solve the above equation for x:

[tex]\begin{gathered} y-2=7x, \\ \frac{y-2}{7}=x\text{.} \end{gathered}[/tex]

Finally, we exchange x and y

[tex]y=\frac{x-2}{7},[/tex]

and set y=f(x). Therefore,

[tex]f^{-1}(x)=\frac{x-2}{7}.[/tex]

b) To verify that the above function is the inverse, we compute:

[tex]f(f^{-1}(x))andf^{-1}(f(x)).[/tex]

For f(f^-1(x)), we get:

[tex]f(f^{-1}(x))=f(\frac{x-2}{7})=7\frac{x-2}{7}+2=x-2+2=x.[/tex]

For f^-1(f(x)) we get:

[tex]f^{-1}(f(x))=f^{-1}(7x+2)=x.[/tex]

Answer:

Part A:

[tex]f^{-1}(x)=\frac{x-2}{7}.[/tex]

Part B:

[tex]f(f^{-1}(x))=f(\frac{x-2}{7})=x.[/tex][tex]f^{-1}(f(x))=f^{-1}(7x+2)=x.[/tex]