A 3.0 kg mass oscillates with a period of 0.432 seconds when attached to a spring. If the three 3.0 kg mass is removed a 1.0 kg mass is attached to the same spring, what will its new period be?

Respuesta :

ANSWER

[tex]\begin{equation*} 0.249\text{ seconds} \end{equation*}[/tex]

EXPLANATION

We want to find the period of the spring-mass system when the mass is changed.

The period of a mass-spring system is given by:

[tex]T=2\pi\sqrt{\frac{m}{k}}[/tex]

where T = period

m = mass

k = spring constant

Substitute the given values for the 3.0 kg mass:

[tex]0.432=2\pi\sqrt{\frac{3.0}{k}}[/tex]

Solve for the spring constant, k:

[tex]\begin{gathered} \frac{0.432}{2\pi}=\sqrt{\frac{3.0}{k}} \\ \\ 0.0688=\sqrt{\frac{3.0}{k}} \\ \\ 0.0688^2=\frac{3.0}{k} \\ \\ k=\frac{3.0}{0.0688^2} \\ \\ k=634.6\text{ kg/s}^2 \end{gathered}[/tex]

Now, solve for the period, T, when m = 1.0:

[tex]\begin{gathered} T=2\pi\sqrt{\frac{1.0}{634.6}} \\ \\ T=2\pi *\sqrt{0.00158}=2\pi *0.0397 \\ \\ T=0.249\text{ seconds} \end{gathered}[/tex]

That is its new period.