ANSWER
[tex]f^{-1}(x)\text{ = }\frac{x}{5}\text{ - 1}[/tex]EXPLANATION
I believe the question means:
[tex]f^{-1}(x)[/tex]This is called the Inverse function.
To do this, first we replace f(x) with y:
[tex]y\text{ = 5x + 5}[/tex]Now, we replace every y with x and vice versa:
[tex]\times\text{ = 5y + 5}[/tex]Now, make y subject of formula:
[tex]\begin{gathered} \text{ x = 5y + 5} \\ x\text{ - 5 = 5y} \\ 5y\text{ = x - 5} \\ \frac{5y}{5}=\text{ }\frac{x}{5}-\text{ }\frac{5}{5} \\ y\text{ = }\frac{x}{5}\text{ -1} \\ f^{-1}(x)\text{ = }\frac{x}{5}\text{ - 1} \end{gathered}[/tex]That is the inverse function