Exponent Rule of algebra Please help meWhat is the order of this problem in the Picture1. Quotient rule2. Negative exponents rule 3. Exponent power rule4. Product rule5. Combining like termsIn order

Exponent Rule of algebra Please help meWhat is the order of this problem in the Picture1 Quotient rule2 Negative exponents rule 3 Exponent power rule4 Product r class=

Respuesta :

[tex](\frac{-3x^{-6}y^{-1}z^{-2}}{6x^{-2}yz^{-5}})^{-2}-\mleft(3x^3y^2z^{-2}\mright)^3\cdot\mleft(x^{-1}y^{-2}\mright)[/tex]

That is the expression given in the exercise.

The procedure is:

1. Apply the Negative exponent rule:

[tex]=(\frac{6x^{-2}yz^{-5}}{-3x^{-6}y^{-1}z^{-2}})^2-(\frac{3x^3y^2}{z^2})^3\cdot\frac{1}{xy^2}[/tex]

2. Apply the Expanded power rule:

[tex]=\frac{36x^{-4}y^2z^{(-10)}}{9x^{(-12)}y^{-2}z^{-4}}^{}-\frac{27x^9y^6}{z^6}^{}\cdot\frac{1}{xy^2}[/tex]

3. Apply the Product rule :

[tex]=\frac{36x^{-4}y^2z^{(-10)}}{9x^{(-12)}y^{-2}z^{-4}}^{}-\frac{27x^9y^6}{z^6xy^2}[/tex]

4. Apply the Quotient rule:

[tex]=\frac{4x^8y^4^{}}{^{}z^6}^{}-\frac{27x^8y^4}{z^6^{}}[/tex]

5. Combining like terms, you get:

[tex]=\frac{4x^8y^4-27x^8y^4}{^{}z^6}^{}=-\frac{23x^8y^4}{z^6}[/tex]

The answer is:

1. Negative exponent rule.

2. Expanded power rule.

3. Product rule.

4. Quotient rule.

5. Combining like terms.