The net impulse acting on the cart can be given as,
[tex]J_n=Ft-j[/tex]Also, the net impulse can be expressed as,
[tex]J_n=m(v-u)[/tex]Equate both the values,
[tex]\begin{gathered} Ft-j=m(v-u) \\ v-u=\frac{Ft-j}{m} \\ v=\frac{Ft-j}{m}+u \end{gathered}[/tex]Substitute the known values,
[tex]\begin{gathered} v=\frac{(4.91\text{ N)(0.274 s)-0.392 Ns}}{(521\text{ g)}}+1.48\text{ m/s} \\ =\frac{0.953\text{ Ns}}{(521\text{ g)(}\frac{1\text{ kg}}{1000\text{ g}})}(\frac{1kgm/s^2}{1\text{ N}})+1.48\text{ m/s} \\ =1.83\text{ m/s+1.48 m/s} \\ =3.31\text{ m/s} \end{gathered}[/tex]Thus, the final speed of cart is 3.31 m/s