amed Jey Rap > Jo suon22 eis yoee saje usand steun et12300g S Period ist Kuta Software - Infinite Algebra 2 Name Samantha cekallas Vertex Form of Parabolas Date 2/24/2020 Use the information provided to write the vertex form equation of each parabola. y=+ 16.0 + 71 2) y = x² – 2x - 5 elxh) 346 y=alx-h122* Y-02-5 381228)2771

amed Jey Rap gt Jo suon22 eis yoee saje usand steun et12300g S Period ist Kuta Software Infinite Algebra 2 Name Samantha cekallas Vertex Form of Parabolas Date class=

Respuesta :

QUestion 3

Given:

[tex]y=-x^2-14x-59[/tex]

Let's find the vertex form of the equation.

To find the vertex form, take the vertex form of an equation:

[tex]y=a(x-h)^2+k[/tex]

Apply the general form:

[tex]\begin{gathered} y=ax^2+bx+c \\ \\ y=-x^2-14x-59 \end{gathered}[/tex]

Where:

a = -1

b = -14

c = -59

From the vertex equation, apply the formula below to find h:

[tex]h=\frac{b}{2a}[/tex]

Substitute values into the formula:

[tex]\begin{gathered} h=\frac{-14}{2(-1)} \\ \\ h=\frac{-14}{-2} \\ \\ h=7 \end{gathered}[/tex]

To find the value of k, apply the formula below:

[tex]k=c-\frac{b^2}{4a}[/tex]

Substitute values into formula:

[tex]\begin{gathered} k=-59-\frac{-14^2}{4(-1)} \\ \\ k=-59-\frac{196}{-4} \\ \\ k=-59-(-49) \\ \\ k=-59+49 \\ \\ k=-10 \end{gathered}[/tex]

From the vertex equation, substitute -1 for a, 7 for h and -10 for k.

We have:

[tex]\begin{gathered} y=-1(x-h)^2+k \\ \\ y=-1(x-7)^2+(-10) \\ \\ y=-(x-7)^2-10 \end{gathered}[/tex]

Therefore, the vrtex form of the given equation is:

[tex]y=-(x-7)^2-10[/tex]

ANSWER:

[tex]y=-1(x-7)^2-10[/tex]