Use the inverse function property to show the given functions are inverses, then explain using asentence why this property shows that that functions are inverses.

Given function :
[tex]f(x)=4x-2[/tex][tex]g(x)=\frac{x+2}{4}[/tex]For check the g(x) is a invers of f(x) the any value of x the f(x) output use as g(x) input then value of output of g(x) is equal to "x"
[tex]\begin{gathered} f(x)=4x-2 \\ at\text{ x=2} \\ f(x)=4(2)-2 \\ =8-2 \\ =6 \\ \end{gathered}[/tex]for g(x)
[tex]\begin{gathered} g(x)=\frac{x+2}{4} \\ \text{the f(x) output is 6 then:} \\ g(6)=\frac{6+2}{4} \\ =\frac{8}{4} \\ =2 \end{gathered}[/tex]so g(x) is a invers of f(x) .
The property show that convert any function to invers function then value of input convert in output and value of output convert in input that mean x change as y and change as x and above method full fill the condition.