Respuesta :

Given:

There are given the piecewise function:

[tex]f(x)=\begin{cases}9x-3\text{ x<0}{} \\ 9x-6\text{ x}\ge0{}\end{cases}[/tex]

Explanation:

First, find the value for f(-1).

Then,

To find the value for f ( -1 ), first, we need to check the value of x which is less than 0

Then,

In the given piecewise function, the value of x which is less than o is;

[tex]f(x)=9x-3[/tex]

Ten,

Put the value -1 for x into the above function:

So,

[tex]\begin{gathered} f(x)=9x-3 \\ f(-1)=9(-1)-3 \\ f(-1)=-9-3 \\ f(-1)=-12 \end{gathered}[/tex]

Now,

For the f(0):

Then,

We need to check the function whose value of x is equal to 0.

Then,

The function is:

[tex]f(x)=9x-6[/tex]

Then,

Put the value 0 for x into the above function:

[tex]\begin{gathered} f(x)=9x-6 \\ f(0)=9(0)-6 \\ f(0)=-6 \end{gathered}[/tex]

Now,

For the function f(2):

Then,

We need to check the value of x has greater than 0:

Then,

The function is:

[tex]f(x)=9x-6[/tex]

Then,

Put the value 6 for x into the above function:;

Then,

[tex]\begin{gathered} f(x)=9x-6 \\ f(2)=9(2)-6 \\ f(2)=18-6 \\ f(2)=12 \end{gathered}[/tex]

Final answer:

Hence, the values are shown below:

[tex]\begin{gathered} f(-1)=-12 \\ f(0)=-6 \\ f(2)=12 \end{gathered}[/tex]