Respuesta :

Answer:

-8/15

Explanations:

Given the following parameters

tan(x) = 4

sin(x) is positive

Required

tan(2x)

According to the double angle formula

[tex]\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}[/tex]

Applying this formula to expand tan(2x)

[tex]\begin{gathered} \tan (2x)=\tan (x+x)=\frac{\text{tanx}+\tan x}{1-\text{tanxtanx}} \\ \tan (2x)=\frac{2\tan x}{1-\tan^2x} \end{gathered}[/tex]

Substitute tan(x) = 4 into the expression:

[tex]\begin{gathered} \tan (2x)=\frac{2\tan x}{1-\tan^2x} \\ \tan (2x)=\frac{2(4)}{1-4^2} \\ \tan (2x)=\frac{8}{1-16} \\ \tan (2x)=-\frac{8}{15} \end{gathered}[/tex]

Hence the value of tan(2x) is given as -8/15