8.422 ft
Step 1
given:
[tex]\begin{gathered} x=12t \\ y=-16t^2+17.2t+6 \end{gathered}[/tex]
hence
a)find the time wich the distance horizontally is 2 ft
so
let
[tex]x=2[/tex]
now ,replace and solve for t
[tex]\begin{gathered} x=12t \\ 2=12t \\ divide\text{ both sides by 12} \\ \frac{2}{12}=\frac{12t}{12} \\ \frac{1}{6}=t \\ t=\frac{1}{6}\text{ seconds} \end{gathered}[/tex]
b)now, find the heigth for the given time
let
[tex]t=\text{ }\frac{1}{6}\text{ sec}[/tex]
now, replace in the parametric equation
[tex]\begin{gathered} y=-16t^2+17.2t+6 \\ y=-16(\frac{1}{6})^2+17.2(\frac{1}{6})+6 \\ y=-\frac{16}{36}+\frac{17.2}{6}+6 \\ y=-0.4444+2.8666+6 \\ y=8.422 \end{gathered}[/tex]
therefore, the answer is
8.422 ft
I hope this helps you