(1 point) The lifetime of a certain type of TV tube has a normal distribution with a mean of 57 and a standard deviation of 6months. What proportion of the tubes lasts between 58 and 60 months?

ANSWER:
12.4%
STEP-BY-STEP EXPLANATION:
Given:
Mean (μ) = 57
Standard deviation (σ) = 6
We can determine the percentage as follows:
[tex]\begin{gathered} P(58\leq x\leq60)=\left(\frac{60-\mu}{\sigma}\right)-\left(\frac{58-\mu}{\sigma}\right) \\ \\ \text{ We replacing:} \\ \\ P\left(58\le\:x\le60\right)=P\left(\frac{60-57}{6}\right)-P\left(\frac{58-57}{6}\right) \\ \\ P\left(58\le\:x\le60\right)=P\left(\frac{3}{6}\right)-P\left(\frac{1}{6}\right) \\ \\ P\left(58\le\:x\le60\right)=P\left(0.5\right)-P\left(0.17\right) \\ \end{gathered}[/tex]Determine these values with the help of the normal table, like this:
[tex]\begin{gathered} P\left(58\le\:x\le60\right)=0.6915-0.5675 \\ \\ P\left(58\le\:x\le60\right)=0.124=12.4\% \end{gathered}[/tex]