Obtain the potential on the x-axis at x = 0 for the following point charge distributions on the x-axis: 200 μC at x = 20 cm, -300 μC at x = 30 cm and -400 μC at x = 40 cm60v,90v,-60v,-90v

Respuesta :

Given:

The charge

[tex]\begin{gathered} q1\text{ = 200 }\mu C \\ =200\times10^{-6}\text{ C} \end{gathered}[/tex]

is at a distance x1 = 20 cm = 0.2 m.

The charge

[tex]\begin{gathered} q2\text{ = -300 }\mu C \\ =-300\times10^{-6}\text{ C} \end{gathered}[/tex]

is at a distance x2 = 30 cm = 0.3 m.

The charge

[tex]\begin{gathered} q3\text{ = -400 }\mu C \\ =-400\times10^{-6}\text{ C} \end{gathered}[/tex]

is at a distance x3 = 40 cm = 0.4 m.

To find the potential at x = 0

Explanation:

The potential can be calculated by the formula

[tex]V=\frac{kq}{x}[/tex]

Here k is Coulomb's constant whose value is 9 x 10^(9) Nm^2/C^2

Potential due to charge 1 is

[tex]\begin{gathered} V1\text{ =}\frac{kq1}{x1} \\ =\frac{9\times10^9\times200\times10^{-6}}{0.2} \\ =9\times10^6\text{ V} \end{gathered}[/tex]

Potential due to charge 2 is

[tex]\begin{gathered} V2\text{ =}\frac{kq2}{x2} \\ =\frac{9\times10^9\times-300\times10^{-6}}{0.3} \\ =-9\times10^6\text{ V} \end{gathered}[/tex]

Potential due to charge 3 is

[tex]\begin{gathered} V3\text{ =}\frac{kq3}{x3} \\ =\frac{9\times10^9\times-400\times10^{-6}}{0.4} \\ =-9\times10^6\text{ V} \end{gathered}[/tex]

Thus, the net potential at x = 0 is

[tex]\begin{gathered} V_{net}\text{ = V1+V2+V3} \\ 9\times10^6-9\times10^6-9\times10^6 \\ =-9\times10^6\text{ V} \end{gathered}[/tex]