We are asked to reflect the vertices of a triangle first across the x-axis and then across the line y = -x. The rule for a reflection across the x-axis is the following:
[tex](x,y)\rightarrow(x,-y)[/tex]Or
[tex]R_x(x,y)=(x,-y)[/tex]The rule for the reflection across the line y = -x:
[tex](x,y)\rightarrow(-y,-x)[/tex]Therefore, applying both transformations we get:
[tex](x,y)\rightarrow(x,-y)\rightarrow(y,-x)[/tex]Applying the rule to each point.
For point F(-6,8) we get:
[tex](-6,8)\rightarrow(-6,-8)\rightarrow(8,6)[/tex]For point G(-3,-1):
[tex](-3,-1)\rightarrow(-3,1)\rightarrow(-1,3)[/tex]For point H(0,4) we get:
[tex](0,4)\rightarrow(0,-4)\rightarrow(4,0)[/tex]