Respuesta :

The Law of Cosines tells us that, given any triangle ABC:

Then:

[tex]a^2=b^2+c^2-2bc\cos(A)[/tex]

In this case:

a = 21

b = 23

c = 17

By the Law of Cosines:

[tex]21^2=23^2+17^2-2\cdot23\cdot17\cdot\cos(A)[/tex]

And solve:

[tex]\begin{gathered} 441=529+289-782\cos(A) \\ . \\ 441-818=-782\cos(A) \\ . \\ \frac{-377}{-782}=\cos(A) \end{gathered}[/tex]

Now we can apply arc cosine on both sides:

[tex]A=\cos^{-1}(\frac{377}{782})\approx61.1775[/tex]

The answer is, to one accurate decimal place:

A = 61.18 degrees.

Ver imagen KaeleyN272651