Respuesta :

The situation is drawn in the diagram below:

We are interested in knowing the speed of the boat (dx/dt) when h = 10 ft and dh/dt = 2 ft/s.

Applying the Pythagorean Theorem:

[tex]h^2=x^2+6^2[/tex]

Differentiating with respect to the time:

[tex]2h\cdot\frac{dh}{dt}=2x\cdot\frac{dx}{dt}[/tex]

Simplifying and solving:

[tex]\frac{dx}{dt}=\frac{h}{x}\cdot\frac{dh}{dt}[/tex]

When h = 10, we can solve for x:

[tex]\begin{gathered} x^2=h^2-6^2=100-36=64 \\ \\ x=\sqrt{64}=8 \end{gathered}[/tex]

Substitute this value of x:

[tex]\frac{dx}{dt}=\frac{10}{8}\cdot2\text{ ft/s}[/tex]

Calculating:

[tex]\frac{dx}{dt}=\frac{5}{2}\text{ ft/s}[/tex]

b. To calculate the rate of change of the angle, we use the tangent ratio as follows:

[tex]\tan\theta=\frac{x}{6}[/tex]

Ver imagen LibertyR329189