Respuesta :

Answer

[tex]P(x)=(x^{3}+2x^{2}+25x+50)[/tex]

Explanation

Given

• Polynomial function of lowest degree

,

• Zeros -2 and 5i

Procedure

The zeros of the polynomial can be written as

[tex]\begin{gathered} x=-2 \\ x+2=0 \end{gathered}[/tex][tex]\begin{gathered} x=5i \\ x-5i=0 \end{gathered}[/tex][tex]\begin{gathered} x=-5i \\ x+5i=0 \end{gathered}[/tex]

If we multiply each other we get:

[tex](x+2)(x-5i)(x+5i)=0[/tex]

Multiplying the last two factors is the sum of two squares:

[tex](x+2)(x^2+25)=0[/tex]

Finally, combining the terms and simplifying:

[tex](x\cdot x^2+2x^2+25x+50)=0[/tex][tex](x^3+2x^2+25x+50)=0[/tex][tex]P(x)=(x^3+2x^2+25x+50)[/tex]