Answer:
a) y = (x-6)/3
b) y = (x + 10)/5
c)
[tex]y=\sqrt{x}[/tex]d)
[tex]y=\sqrt{\frac{x+4}{2}}[/tex]e)
[tex]y=\sqrt{x}+5[/tex]Step-by-step explanation:
In each case, first we place everything with y on the left side and everything without y on the right side. Then we apply the operation needed to isolate y.
a. x=3y+6
3y + 6 = x
3y = x - 6
y = (x-6)/3
b. x=5y-10
5y - 10 = x
5y = x + 10
y = (x + 10)/5
C. x=y2
y² = x
To simplify the square, we apply the square root to both sides. So
[tex]\sqrt{y^2}=\sqrt{x}[/tex][tex]y=\sqrt{x}[/tex]d. x=2y2-4
2y2-4 = x
2y² = x + 4
y² = (x+4)/2
Again, to simplify the square, we apply the root to both sides.
[tex]\sqrt{y^2}=\sqrt{\frac{x+4}{2}}[/tex][tex]y=\sqrt{\frac{x+4}{2}}[/tex]e. x=(y-5)2
(y-5)² = x
[tex]\sqrt{(y-5)^2}=\sqrt{x}[/tex][tex]y-5=\sqrt{x}[/tex][tex]y=\sqrt{x}+5[/tex]