Simplify the expression using trigonometric identities (csc θ – csc θ · cos2 θ).A) sin2 θB) sin θ · tan θC) sin3 θD) sin θ

Respuesta :

Given the expression;

[tex]\csc \theta-\csc \theta\cdot\cos ^2\theta[/tex]

This can be simplified as;

[tex]\csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(1-\cos ^2\theta)[/tex]

Recall the identity that;

[tex]\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \sin ^2\theta=1-\cos ^2\theta \end{gathered}[/tex]

Then, we have;

[tex]\csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(\sin ^2\theta)[/tex]

Also, recall that;

[tex]\csc \theta=\frac{1}{\sin \theta}[/tex]

So, we have;

[tex]\begin{gathered} \csc \theta-\csc \theta\cdot\cos ^2\theta=\csc \theta(\sin ^2\theta) \\ \csc \theta-\csc \theta\cdot\cos ^2\theta=\frac{1}{\sin \theta}(\sin ^2\theta) \\ \csc \theta-\csc \theta\cdot\cos ^2\theta=\sin \theta \end{gathered}[/tex]

CORRECT OPTION: D