Name MA3 - Derivatives (Power Rule) Find the derivative of the following functions. 1. f(x) = 12x² + 4x5 Solution 2. f(x) = 3x + 2x 4 + 23x Solution 3. f(x) = 9x* – 5x + 14,000,605 Solution

Respuesta :

1) the fuction is:

[tex]f(x)=12x^2+4x^5[/tex]

and the derivate will be:

[tex]f^{\prime}(x)=24x+20x^4[/tex]

2) The function is:

[tex]f(x)=3x^6+2x^{-4}+23x[/tex]

and the derivate:

[tex]f^{\prime}(x)=18x^5-8x^{-5}+23[/tex]

3) the function is:

[tex]f(x)=9x^{\frac{11}{4}}-5x+14000605[/tex]

and the derivate will be:

[tex]\begin{gathered} f^{\prime}(x)=\frac{11}{4}\cdot9x^{\frac{11}{4}-\frac{4}{4}}-5+0 \\ f^{\prime}(x)=\frac{99}{4}x^{\frac{7}{4}}-5 \end{gathered}[/tex]

4) the function is:

[tex]f(x)=\frac{4x^6-13x^3-21}{x^3}[/tex]

and the derivation will be:

[tex]f^{\prime}(x)=\frac{(24x^5-39x^2)x^3-(4x^6-13x^3-21)3x^2}{(x^3)^2}[/tex]

5) the equation is:

[tex]f(x)=\frac{11}{x^3}-2\sqrt[5]{x}[/tex]

first we rewrite the equation so:

[tex]f(x)=11x^{-3}-2x^{\frac{1}{5}}[/tex]

and now we derivate so:

[tex]f(x)=-33x^{-4}-\frac{2}{5}x^{-\frac{4}{5}}[/tex]