consider the following graph of an exponential function model in the geometric sequence 1 3 9 27 which of the following statements are valid based on the graph? Represents the growth of the factor of the function... select all correct choices

consider the following graph of an exponential function model in the geometric sequence 1 3 9 27 which of the following statements are valid based on the graph class=

Respuesta :

Solution

we will consider the option one after the other

Option A

When we considered the coordinates (0, 1) and (-1, 1/3)

the growth factor (or the common ratio r is )

Let T_n denotes the nth term

Here, n = 0

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_0}{T_{-1}} \\ r=\frac{1}{(\frac{1}{3})} \\ r=1\div\frac{1}{3} \\ r=1\times\frac{3}{1} \\ r=3 \end{gathered}[/tex]

Correct

Option B

When we considered the coordinates (1, 3) and (2, 9)

Here, n = 2

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_2}{T_1} \\ r=\frac{9}{3} \\ r=3 \end{gathered}[/tex]

False

Option C

When we considered the coordinates (3, 27) and (2, 9)

Here n = 3

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_3}{T_2} \\ r=\frac{27}{9} \\ r=3 \end{gathered}[/tex]

Correct

Option D

When we considered the coordinates (0, 1) and (-1, 1/3)

Here, n = 0

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_0}{T_{-1}} \\ r=\frac{1}{(\frac{1}{3})} \\ r=1\div\frac{1}{3} \\ r=1\times\frac{3}{1} \\ r=3 \end{gathered}[/tex]

False

Option E

When we considered the coordinates (3, 27) and (2, 9)

Here n = 3

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_3}{T_2} \\ r=\frac{27}{9} \\ r=3 \end{gathered}[/tex]

False

Option F

When we considered the coordinates (1, 3) and (2, 9)

Here, n = 2

[tex]\begin{gathered} r=\frac{T_n}{T_{n-1}} \\ r=\frac{T_2}{T_1} \\ r=\frac{9}{3} \\ r=3 \end{gathered}[/tex]

Correct

Ver imagen KeilonS93339