Respuesta :

Answer:

The equation of the perpendicular line is y=-3x-15.

Explanation:

Given the line y=1/3x+6

Comparing it with the slope-intercept form: y=mx+b

[tex]\text{Slope}=\frac{1}{3}[/tex]

Let the slope of the perpendicular line = m

Two lines are perpendicular if the product of their slopes is -1.

Therefore:

[tex]\begin{gathered} \frac{1}{3}m=-1 \\ m=-3 \end{gathered}[/tex]

To find the equation of the perpendicular line passing through (-9, 12), we use the point-slope form.

[tex]y-y_1=m(x-x_1)[/tex]

Substituting the slope and point (-9,12), we have:

[tex]\begin{gathered} y-12=-3(x-(-9)) \\ y-12=-3(x+9) \\ y-12=-3x-27 \\ y=-3x-27+12 \\ y=-3x-15 \end{gathered}[/tex]

The equation of the perpendicular line is y=-3x-15.