Can the equation x^2 - 8x + 18 = 0 be solved by factoring? X=

Given the equation:
[tex]x^2-8x+18=0[/tex]a = 1, b = -8, c = 18
We will calculate the discriminant D
[tex]D=b^2-4ac[/tex]Substitute with a, b, and c
[tex]D=(-8)^2-4\cdot1\cdot18=-8[/tex]As the value of (D) is negative the solution to the equation can't be solved by factoring
There are two complex values for x
[tex]x=\frac{-b\pm\sqrt[]{D}}{2a}[/tex]Substitute with a, b, and D
So, the values of x will be:
[tex]x=\frac{8\pm\sqrt[]{-8}}{2\cdot1}=\frac{8\pm i2\sqrt[]{2}}{2}=4\pm i\sqrt[]{2}[/tex]so, the answer will be:
[tex]x=4\pm i\sqrt[]{2}[/tex]