Respuesta :

Given the equation:

[tex]x^2-8x+18=0[/tex]

a = 1, b = -8, c = 18

We will calculate the discriminant D

[tex]D=b^2-4ac[/tex]

Substitute with a, b, and c

[tex]D=(-8)^2-4\cdot1\cdot18=-8[/tex]

As the value of (D) is negative the solution to the equation can't be solved by factoring

There are two complex values for x

[tex]x=\frac{-b\pm\sqrt[]{D}}{2a}[/tex]

Substitute with a, b, and D

So, the values of x will be:

[tex]x=\frac{8\pm\sqrt[]{-8}}{2\cdot1}=\frac{8\pm i2\sqrt[]{2}}{2}=4\pm i\sqrt[]{2}[/tex]

so, the answer will be:

[tex]x=4\pm i\sqrt[]{2}[/tex]