Respuesta :

Step 1: Write out the formula

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex][tex]\begin{gathered} \text{Where} \\ m=\text{ the slope of the line betw}een\text{ the points (x1,y1) and (x}2,y2) \\ x_1=\text{ the x-coordinate of the first point} \\ y_1=\text{ the y-coordinate of the first point} \\ x_2=\text{ the x-coordinate of the second point} \\ y_2=\text{ the y-coordinate of the second point} \end{gathered}[/tex]

Step 2: Write out the given values and substitute them into the equation

[tex]\begin{gathered} x_1=2 \\ y_1=3 \\ x_2=1 \\ y_2_{}=-2 \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\text{ }\frac{-2-3}{1-2} \\ m=\frac{-5}{-1} \\ m=\text{ 5} \end{gathered}[/tex]

Hence the slope of the line between the two points = 5