Determine the exact value of [tex] \csc(0) [/tex]when [tex] \cot(0) = 3 \div 4[/tex]and [tex] \cos(0) \ \textgreater \ 0[/tex]

The cot(θ) is given by:
[tex]\cot (\theta)=\frac{adjacent}{opposite}=\frac{3}{4}[/tex]so:
The hypotenuse can be found using pythagorean theorem:
[tex]\begin{gathered} x=\sqrt[]{4^2+3^2} \\ x=\sqrt[]{25} \\ x=5 \end{gathered}[/tex]Therefore, the csc(θ) is given by:
[tex]\begin{gathered} \csc (\theta)=\frac{hypotenuse}{opposite} \\ so\colon \\ \csc (\theta)=\frac{5}{4} \end{gathered}[/tex]