Respuesta :

Given the function

[tex]f(x)=\frac{1}{1-x}[/tex]

The derivative of the function will be as follows:

[tex]\begin{gathered} f^{\prime}(x)=\frac{(1-x)\cdot0-1\cdot(0-1)}{(1-x)^2} \\ \\ f^{\prime}(x)=\frac{1}{(1-x)^2} \end{gathered}[/tex]

Another alternate method:

the limit definition of the derivative will be as follows:

We will find f(x+h)

so,

[tex]f(x+h)=\frac{1}{(1-x-h)}[/tex]

We will the difference between f(x+h) and f(x)

[tex]\begin{gathered} f(x+h)-f(x)=\frac{1}{1-x-h}-\frac{1}{1-x} \\ f(x+h)-f(x)=\frac{(1-x)-(1-x-h)}{(1-x-h)(1-x)} \\ f(x+h)-f(x)=\frac{1-x-1+x+h}{(1-x-h)(1-x)} \\ f(x+h)-f(x)=\frac{h}{(1-x-h)(1-x)} \end{gathered}[/tex]

Then divide the last result by h:

[tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{h}{(1-x-h)(1-x)}\cdot\frac{1}{h} \\ \\ \frac{f(x+h)-f(x)}{h}=\frac{1}{(1-x-h)(1-x)} \end{gathered}[/tex]

And finally, we will find the limit when h→0

so,

[tex]\lim _{h\rightarrow0}\frac{f(x+h)-f(x)}{h}=\lim _{h\rightarrow0}\frac{1}{(1-x-h)(1-x)}=\frac{1}{(1-x)(1-x)}=\frac{1}{(1-x)^2}[/tex]

the alternative definition to find the derivative:

[tex]\lim _{x\rightarrow a}\frac{f(x)-f(a)}{x-a}[/tex]

We will find the value of f(a), this means we will substitute with (x = a) into the given function

so,

[tex]f(a)=\frac{1}{1-a}[/tex]

Now, find the difference between f(x) and f(a)

[tex]\begin{gathered} f(x)-f(a)=\frac{1}{1-x}-\frac{1}{1-a} \\ \\ f(x)-f(a)=\frac{(1-a)-(1-x)}{(1-x)(1-a)} \\ \\ f(x)-f(a)=\frac{1-a-1+x}{(1-x)(1-a)}_{} \\ \\ f(x)-f(a)=\frac{x-a}{(1-x)(1-a)} \end{gathered}[/tex]

divide the last result by (x-a)

so,

[tex]\begin{gathered} \frac{f(x)-f(a)}{x-a}=\frac{(x-a)}{(x-a)(1-x)(1-a)} \\ \\ \frac{f(x)-f(a)}{x-a}=\frac{1}{(1-x)(1-a)} \end{gathered}[/tex]

Finally, find the limit when x→a

So,

[tex]f^{\prime}(a)=\lim _{x\rightarrow a}\frac{1}{(1-x)(1-a)}=\frac{1}{(1-a)(1-a)}=\frac{1}{(1-a)^2}[/tex]