Respuesta :

Given:

NR = 10 m

Measure of arc MQ = 162 degrees

Let's find the length of arc NP.

Here, we have:

Measure of arc MQ = Measure of arc NP

Now apply the Angle-arc relationship, we have:

Measure of arc NP = measure of angle NRP = 162 degrees.

To find the length of arc NP, apply the formula;

[tex]arc_{NP}=\frac{\theta}{360}*2\pi r[/tex]

Where:

θ = 162 degrees

r is the radius = NR = 10 m

Thus, we have:

[tex]\begin{gathered} arc_{NP}=\frac{162}{360}*2\pi *10 \\ \\ arc_{NP}=0.45*62.83 \\ \\ arc_{NP}=28.27\text{ m} \end{gathered}[/tex]

Therefore, the length of arc NP is 28.27 m.

ANSWER:

28.27 m