Dana puts 100.00 into an account for school expenses. The account earns 8% interest compounded annually how much will be in the account after 5 years?

Respuesta :

Step 1: Write out the formula and the given values

[tex]A=P(1+r)^t[/tex][tex]\begin{gathered} \text{where} \\ A=\text{ amount after t years} \\ P=\text{ the principal} \\ r=\text{ the interest compounded annually} \\ t=\text{ the time in years} \end{gathered}[/tex]

In our case,

[tex]\begin{gathered} P=100.00 \\ r=8\text{ \%} \\ t=5\text{years} \end{gathered}[/tex]

Step 2: Substitute the given values into the formula

[tex]A=100(1+\frac{8}{100})^5=100\times(1+0.08)^5=100\times1.08^5\approx146.93[/tex]

Therefore the amount in the account after 5 years is 146.93