You run a spinner experiment with these results:bluecolorredgreenspins1110a. Find the experimental probability of spinning green .b. Find the experimental probability of spinning blue or greenc. What is the sample space for this experiment?

Total spins = 11 + 10 +9 = 30
Total spins of red = 11
Total spins of green = 10
Total spins of blue = 9
The formula for finding probability, P, is
[tex]P=\frac{\text{required outcomes}}{possible\text{ outcomes}}[/tex]Let the probability of spinning a red be P(R)
Let the probability of spinning a green be P(G)
Let the probability of spinning a blue be P(B)
a) The experimental probability of spinning a green, P(R) is
[tex]\begin{gathered} P=\frac{\text{required outcome}}{possible\text{ outcome}} \\ P(R)=\frac{\text{Total spins of green}}{Total\text{ spins}}=\frac{10}{30}=\frac{1}{3} \\ P(R)=\frac{1}{3} \end{gathered}[/tex]Hence, the experimental probability of spinning a green is 1/3
b) The experimental probability of spinning a blue, P(B), is
[tex]\begin{gathered} P=\frac{\text{required outcome}}{possible\text{ outcome}} \\ P(B)=\frac{\text{Total spins of green}}{Total\text{ spins}}=\frac{9}{30}=\frac{3}{10} \\ P(B)=\frac{3}{10} \end{gathered}[/tex]The experimental probability of spinning a blue, P(B), is 3/10
The experimental probability of spinning a green, P(G), is 1/3
The experimental probability of spinning a blue or green, P(B OR G), will be
[tex]\begin{gathered} P(B\text{ OR G)}=P(B)+P(G) \\ P(B\text{ OR G)}=\frac{3}{10}+\frac{1}{3}=\frac{9+10}{30}=\frac{19}{30} \\ P(B\text{ OR G)}=\frac{19}{30} \end{gathered}[/tex]Hence, the experimental probability of spinning a blue or green, P(B OR G) is 19/30
c) The sample space for this experiment is the total possible outcome that can be obtained
Hence, the sample space for this experiment is 30