Starting with the equation:
[tex]2x^2+14x-6=x^2+7x[/tex]Substract 7x from both sides:
[tex]\begin{gathered} 2x^2+14x-6-7x=x^2 \\ \Rightarrow2x^2+7x-6=x^2 \end{gathered}[/tex]Substract x squared from both sides:
[tex]\begin{gathered} 2x^2+7x-6-x^2=0 \\ \Rightarrow x^2+7x-6=0 \end{gathered}[/tex]Use the quadratic formula to find the values of x:
[tex]\begin{gathered} x=\frac{-7\pm\sqrt[]{7^2-4\cdot(1)\cdot(-6)}}{2\cdot(1)} \\ =\frac{-7\pm\sqrt[]{49+24}}{2} \\ =\frac{-7\pm\sqrt[]{73}}{2} \end{gathered}[/tex]Use a calculator to find both values of x:
[tex]\begin{gathered} x_1=\frac{-7+\sqrt[]{73}}{2}_{} \\ =0.7720018727\ldots \\ \approx0.8 \end{gathered}[/tex][tex]\begin{gathered} x_2=\frac{-7-\sqrt[]{73}}{2} \\ =-7.772001873\ldots \\ \approx-7.8 \end{gathered}[/tex]