A monochromatic beam of x-rays of wavelength 2.80 x 10^-10 m is scattered by a metal foil. What is the wavelength, in nm, of the scattered x-rays at an angle of 37.37° from the direction of the incident beam?

Respuesta :

ANSWER

[tex]\begin{equation*} 81.78\text{ nm} \end{equation*}[/tex]

EXPLANATION

Wavelength of incident X-rays, λ = 2.80 * 10^-10 m

Scattered angle, θ = 37.37°

To find the wavelength of the scattered x-rays, apply the equation for Compton's effect:

[tex]\lambda^{\prime}-\lambda=\frac{h}{m_oc}(1-\cos\theta)[/tex]

where h = Planck's constant

λ' = wavelength of the scattered x-rays

Substitute the given values into the equation and solve for λ':

[tex]\begin{gathered} \lambda^{\prime}-2.80*10^{-10}=\frac{6.63*10^{-34}}{1.67*10^{-27}}(1-\cos37.37) \\ \\ \lambda^{\prime}-2.80*10^{-10}=\frac{6.63*10^{-34}}{1.67*10^{-27}}*0.2053 \\ \\ \lambda^{\prime}-2.80*10^{-10}=8.15*10^{-8} \\ \\ \lambda^{\prime}=8.15*10^{-8}+2.80*10^{-10} \\ \\ \lambda^{\prime}=8.178*10^{-8}\text{ m}=81.78\text{ nm} \end{gathered}[/tex]

That is the wavelength of the scattered x-rays in nanometers.