Respuesta :

Solution

For this case we have the following expression:

[tex]\sec \theta=\frac{1}{\cos \theta}=\frac{13}{12}[/tex]

Then solving for cos we got:

[tex]\cos \theta=\frac{12}{13}[/tex]

We can find sin with this:

[tex]\sin \theta=\sqrt[]{1-(\frac{12}{13})^2}=\frac{5}{13}[/tex]

If we find tan theta we got:

[tex]\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}[/tex]

and cosecant is:

[tex]\text{csc}\theta=\frac{1}{\sin \theta}=\frac{1}{\frac{5}{13}}=\frac{13}{5}[/tex]

Then the correct answer is:

B and D