Solution
For this case we have the following expression:
[tex]\sec \theta=\frac{1}{\cos \theta}=\frac{13}{12}[/tex]Then solving for cos we got:
[tex]\cos \theta=\frac{12}{13}[/tex]We can find sin with this:
[tex]\sin \theta=\sqrt[]{1-(\frac{12}{13})^2}=\frac{5}{13}[/tex]If we find tan theta we got:
[tex]\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}[/tex]and cosecant is:
[tex]\text{csc}\theta=\frac{1}{\sin \theta}=\frac{1}{\frac{5}{13}}=\frac{13}{5}[/tex]Then the correct answer is:
B and D