area of a triangle: law of sinesother tutors couldn’t solve so they referred me to different people!! please help i’m so desperate

For this problem, we use the sine law to compute the length of the missing sides:
[tex]\frac{^{}VU}{\sin\text{ }\measuredangle\text{UWV}}=\frac{WU}{\sin \measuredangle WVU}[/tex]Recalling that the interior angles of a triangle add up 180 degrees we get:
[tex]\measuredangle WVU=180^{\circ}-26^{\circ}-35^{\circ}=119^{\circ}[/tex]Substituting the angles and solving for the length of the missing sides we get:
[tex]\begin{gathered} \frac{WU}{\sin 119^{\circ}}=\frac{10\text{ yd}}{\sin 26^{\circ}}\Rightarrow VW=\sin 119^{\circ}\frac{10yd}{\sin 26^{\circ}}\approx19.951\text{ yd} \\ \end{gathered}[/tex]The height of the triangle with respect to the side WU is:
[tex]h=10yd(\sin 35^{\circ})\approx5.735\text{ yd}[/tex]Finally, using the formula for the area of a triangle:
[tex]A=\frac{bh}{2}=\frac{19.951yd\cdot5.735\text{ yd}}{2}=57.2yd^2[/tex]Answer: 57.2 square yards.